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Robust assessment of genetic effects on quantitative traits or complex-disease risk requires synthesis of evidence from multiple studies.

Frequently, studies have genotyped partially overlapping sets of SNPs within a gene or region of interest, hampering attempts to com-

bine all the available data. By using the example of C-reactive protein (CRP) as a quantitative trait, we show how linkage disequilibrium

in and around its gene facilitates use of Bayesian hierarchical models to integrate informative data from all available genetic association

studies of this trait, irrespective of the SNP typed. A variable selection scheme, followed by contextualization of SNPs exhibiting inde-

pendent associations within the haplotype structure of the gene, enhanced our ability to infer likely causal variants in this region with

population-scale data. This strategy, based on data from a literature based systematic review and substantial new genotyping, facilitated

the most comprehensive evaluation to date of the role of variants governing CRP levels, providing important information on the

minimal subset of SNPs necessary for comprehensive evaluation of the likely causal relevance of elevated CRP levels for coronary-

heart-disease risk by Mendelian randomization. The same method could be applied to evidence synthesis of other quantitative traits,

whenever the typed SNPs vary among studies, and to assist fine mapping of causal variants.
Introduction

Genetic effects underlying complex traits and disorders are

small, and their detection requires comprehensive typing

of single nucleotide polymorphisms (SNPs) in large sam-

ples.1,2 Many previous genetic association studies have

been underpowered,3,4 and even very large biobanks5

may not individually provide conclusive results for certain

outcomes. Quantitative synthesis of evidence from avail-

able studies remains vital,6–8 even in the era of genome-

wide analyses.9–11 However, a major obstacle is that studies

of the same gene, region, or even the genome as a whole

may type a different repertoire of SNPs, thereby yielding

partially overlapping genotypic data. Moreover, often

only single SNP summary data, for instance genotype

means at each SNP, is reported.

The meta-analysis of results from each marker in isola-

tion would exclude those studies that did not type the

marker in question, with a potential loss of power; more-

over, multiple single-SNP analyses are difficult to interpret.

Instead, it would be useful to be able to combine data with

information from all sites, adjusting any association at

each site for the possible correlation with the remaining

variants. One could then disentangle effects at causal sites
Th
from those at sites that are in LD with a causal variant(s)

and also borrow information across studies. With focus

on a quantitative trait, we develop a Bayesian hierarchical

linear regression that models linear transformations of the

study-specific genotype-group-specific phenotypic means

and that uses pairwise LD measurements between markers

to make posterior inference on adjusted effects. Informa-

tion on pairwise marker LD is often provided by the indi-

vidual studies as part of the results reported. Alternatively,

for markers that are not considered jointly in any of the

study at hand, it can often be obtained from public data-

bases. This information is then used to specify informative

priors in our Bayesian framework. Specifically, the be-

tween-marker correlations are modeled by introduction

of spatially correlated random effects having a conditional

autoregressive distribution (CAR).12,13 The between-study

variability is then accommodated with a random intercept

term across studies.

Our approach is motivated by the meta-analysis of stud-

ies assessing the effect of variants in the C-reactive protein

(CRP [MIM 123260]) gene region on plasma CRP levels.

CRP is a circulating monomorphic hepatic acute-phase

protein that indexes and may mediate aspects of the in-

flammatory response.14 Aside from acute-phase elevations,
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Figure 1. Location of the Eight CRP
SNPs Typed Directly in the 26 Data Sets
Included in This Study
The upper track shows chromosomal lo-
cation; the middle track shows SNP lo-
cation and Log(P) for the per-allele
random-effect meta-analysis (from left
to right, the SNPs are ordered as follows:
rs3093077, rs1205, rs1130864, rs1800947,
rs1417938, rs3091244, rs2794521, and
rs3093059); and the lower track shows the
intron/exon structure of the CRP gene.
blood concentrations of CRP show similar within-individ-

ual variability to serum cholesterol, and like cholesterol,

CRP has been shown to be associated with future coronary

heart disease (CHD) risk in observational studies.15 How-

ever, the etiological relevance of this potentially important

and highly studied link with CHD is uncertain because

CRP may simply be a marker for established risk factors

or for subclinical atheroma.16,17 Common SNPs that are

in the gene encoding CRP and that influence its level

may help provide insight on the link because, unlike

CRP itself, genotype is fixed and unaffected by subclinical

disease and the naturally randomized allocation of alleles

at conception balances the distribution of potential con-

founding factors among genotypic classes. Genetic associ-

ations are therefore less prone to biases that limit causal

inference from observational studies, and genetic studies

possess properties of a randomized intervention trial.16–18

Therefore, identification of CRP-gene variants (HGNC:

2637; 1q21-q23) that influence its concentration is funda-

mental to evaluating the causal relevance of CRP with the

principle of Mendelian randomization.19

In the absence of hepatic stores of CRP, and given its

constant rate of clearance, gene transcription provides

the major point of regulation.14 Transcription may be

modified by regulatory SNPs because concentrations of

CRP show strong concordance among monozygotic twins

and family studies suggest substantial heritability.20 In

populations of European descent, there are 11 common

SNPs with minor allele frequency >5% within 6 kb of

the CRP gene, but extensive linkage disequilibrium (LD)

means that four major haplotypes account for 94% of

chromosomes (see Web Resources).21,22 Individual reports

evaluating associations of CRP SNPs with CRP concentra-

tion have either typed single SNPs or a subset of SNPs

(sometimes tag SNPs) in this region (see Table S1 available

online). However, the SNPs have varied across studies,

thereby limiting the ability to pool all available data. We

therefore developed a new integrative approach to evi-

dence synthesis of genetic association studies that allows

for this complexity.

Methods for combining data from genome-wide scans

with nonoverlapping sets of SNPs with individual-level

genotyping data have been recently proposed by March-

ini et al.23 Here, because individual-level data are not

available for most of the studies on CRP, we develop
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a method that allows the synthesis of studies providing

only summary data. Also, we are mainly concerned with

the synthesis of SNP data in regions of interest for fine

mapping, where the number of markers typed is small

and interest is on disentangling independent effects

using a variable selection scheme, for which the Marchini

approach is not suitable.

Material and Methods

We first conducted a literature-based systematic review of all rele-

vant studies (irrespective of the SNP typed). A total of 23 published

data sets identified by systematic review evaluated associations

of eight SNPs (rs3093059; rs2794521; rs3091244; rs1417938;

rs1800947; rs1130864; rs1205; and rs3093077) in the CRP gene

with CRP concentration (Figure 1). With data from SeattleSNPs,

a combination of three SNPs (rs1130864; rs1205; and rs3093077)

was identified as haplotype tag SNPs with the haplotype r2 method

in European subjects. These tag SNPs were typed in three addi-

tional population-based studies, thereby giving an aggregate of

26 studies including 32,802 subjects. No SNP was typed in every

study, but there was partial overlap of SNP typing across several

studies (see Appendix A and Table S1).

Bayesian Hierarchical Model
We indicate with Yi

s the continuous trait of interest for subject

i ˛ 1,.,nsgf and study s ˛ 1,.,Sgf . If all studies have genotyped in-

dividuals at all m marker locations, and these data are available for

all individuals (individual patient data [IPD]), a sensible approach

to pool information across studies would be the random-effect

model

Ys � N
�
Cs

bþ 1ns ms,s
2Ins

�
(1)

where Cs is the ns 3 (m þ 1) design matrix coding for the chosen

genetic model (e.g., for an additive models, 0, 1, and 2 for homo-

zygous wild-type, heterozygous, or homozygous mutant geno-

types, respectively) and the intercept term, ms ~N(0, s2
s) is

a study-specific random intercept term, 1ns is the ns 3 1 vector

of ones, Ins is the ns 3 ns identity matrix, and b ¼ ðb0,b1,.,bmÞ0

is the (m þ 1) 3 1 vector of regression coefficients of interest mea-

suring the effect of genotype group on Y. One could then assess the

relative importance of each marker by using a variable selection

scheme; we use a reversible jump algorithm on the space of possi-

ble models as part of the MCMC scheme as described later in the

text.24,25

However, studies will rarely consider all m markers together;

rather, ms % m will have been typed in study s corresponding to
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a subset Ls of columns of the complete design matrix Cs, Xs say of

size ns 3 (ms þ 1). Also, complete individual patient data for all

studies are rarely available. Instead, we have the summary statis-

tics reported in each study as in the case of the CRP studies. Typi-

cally, data will consist of means, variances, and numbers of indi-

viduals for each genotype groups and each marker. These are

denoted by �ys
gj, vgj

s , and ngj
s , respectively, for genotype group

g ¼ 1,.,Gj of marker j ˛ {Ls} in study s. The notation allows for

marker-specific numbers of genotype groups and thus the possibil-

ity of having a mixture of biallelic and triallelic markers, as in the

application to the CRP data, or different genetic models.

Our approach uses Equation (1) as the building block but

models the linear transformations Ts ¼ Xs0Ys as multivariate

normally distributed across studies

Ts �MVNms

�
Xs0Cs

bþXs01ns ms,s
2Xs0Xs

�
(2)

where Xs0 indicates the transpose of Xs. All entries of the vector Ts

can be obtained from the available data summaries. For instance,

the first element corresponding to the intercept term is the overall

sum of the y values, and any other entry can be obtained similarly

from the genotype-group-specific phenotype means and counts

�ys
gj, ns

gi:

However, the new design matrix Ws ¼Xs0Cs is only partially ob-

served. In particular, only the dot products involving the columns

of Xs with themselves or the intercept term can be derived from

the observed genotype-group counts. The remaining entries are re-

placed by their expected values under Hardy-Weinberg equilib-

rium (HWE) and the known pairwise LD patterns. Specifically, in-

dicating with whl, h s l, a generic such entry, we first obtain an

estimate of the joint bivariate genotype distribution from the

known marginal allele frequencies and the pairwise measure of

LD.26 For example, if both markers are biallelic, this involves esti-

mation of the 3 3 3 matrix of the genotype distribution, and this

estimation is then multiplied by the study size to give expected

counts. Finally, we obtained whl by summing the appropriate en-

tries of the resulting matrix of expected counts multiplied by the

values used to code the genotype groups in the design matrices.

Notice that the vector of coefficients b retains the same interpreta-

tion and scale of the original model in Equation (1) (in the exam-

ple below, additive effect of variants on log CRP plasma levels) be-

cause it is derived from a linear transformation of the variables

therein.

As well as in the derivation of the new design matrix Ws, prior

information of between-marker LD patterns is also incorporated

in the specification of the (partially unobserved) variance-covari-

ance matrix in Equation (2). Specifically, we partition s2Xs0Xs

into a spatially structured component and a residual, unstruc-

tured, component. We obtained the former by introducing

marker-specific random effects having a zero-mean conditional

autoregressive distribution

U � CAR
�
0,s2

uðI� gRÞ�1M
�

(3)

where U is a vector of size m, the number of unique markers across

studies, R is a matrix of weights reflecting spatial associations be-

tween the elements of Ts, and M is a diagonal matrix.12,27 Thus the

covariance matrix in Equation (2) becomes s2
u(I � gR)�1M þ

s2
3diag(X0X) where we set g h 1 and (I � gR)�1M h (X0X � diag

(X0X)), where with X0X we indicate the weighted average of the

study-specific cross-products Xs0Xs with weights given by the

number of subjects in each study. The latter equivalence then

reflects our prior information on pairwise LD, as the off-diagonal
The
elements of the matrix Xs0Xs0 are replaced by their expected values

given the LD patterns.

Conditional on the study and marker-specific random effects ms

and Uj, the elements of Ts are independent and we can rewrite

Equation (2) as

Ts
j jms,Uj � N

 
Wj,,bþ

Xns

i¼1

xs
i,jms þ Uj,s

2
e diag

�
Xs0Xs

�
j,j

!
(4)

j ˛fLsg:

We further assume that the marker and study-specific pooled

variances

vs
:j ¼

P
g

�
ngj � 1

�
vs

gjP
g

�
ngj � 1

�
have a scaled chi-square distribution

vs
:j ¼

s2
eP

g ngjs �Gj

cP
g

ngjs�Gj
:

Albeit an approximation, this assumption is likely to hold when

the individual SNP associations are modest, as it is reasonable to

expect in this setting. Also, by modeling the observed variances,

we are able to impute any missing values from their full condi-

tional distribution as part of the MCMC scheme.

The hierarchical specification is completed by assuming a distri-

bution for the between-studies random effects ms. In order to

accommodate outliers and heavy tails, we assume the mixture

of normals

ms � pNða1,s2
mÞ þ ð1� pÞNða2,s2

mÞ (5)

with a2 ¼ �pa1=ð1� pÞ:28

To select important marker-phenotype associations, we use a re-

versible jump algorithm on the space of models in the MCMC

scheme.24,25 In brief, denoting with k the number of SNP currently

included in a model, we made a proposal to change the current

model by adding a marker, deleting a marker, or swapping a marker

currently in the model with one from the remaining SNPs. The

new model is accepted with probability proportional to its likeli-

hood. Conditional on the accepted model, new values for the ap-

propriate subset of parameters in b are then sampled from their full

conditional distribution. By monitoring the different models

visited, we readily obtained posterior model probabilities. The

algorithm is not guaranteed to visit all possible models, but in

many cases, if the number of available predictors is not large as

here, an acceptable qualitative assessment of the support received

from the data by the different models is possible. Finally,

prior distributions for all remaining unknown parameters are as

follows

bj � Nð0,s2
bÞ, j ¼ 1,.,m

a1 � Nð0,1e� 6Þ
p � Betað1,1Þ
s�2

m � Gammað0:001,0:001Þ
s�2

b � Gammað0:001,0:001Þ
s�2

U � Gammað0:5,0:0005Þ
s�2

y � Gammað0:001,0:001Þ

where the prior for the precision of the spatial effects is that sug-

gested by Kensall and Wakefield.29 The reversible jump algorithm

requires specification of a prior on model size. Typical choices in-

clude a uniform prior on the model space or a Poisson or geometric
American Journal of Human Genetics 82, 859–872, April 2008 861



distribution on the number of regression terms k included in each

model.25,30,31 The simulation study in the next section includes

a sensitivity analysis of this choice. A graphical representation of

the hierarchical model (4) is given in Figure 2.

Single-Marker Random-Effect Meta-Analysis
Results from the multilocus model are compared to those obtained

from a more traditional single-locus random-effects meta-analysis

in both simulation studies and with real data from the CRP-gene

region. For the latter, a per-allele effect (95% CI) of individual

SNPs on CRP concentration was derived from each individual

study. The individual-study linear trend (additive effect) per cate-

gory increase in genotype with mean data was calculated by

simple linear regression, with genotypes coded as 0, 1, and 2 for

homozygous common allele, heterozygous, and homozygous rare-

allele, respectively, with the least-square linear-trend-coefficient

formula, which only depends on the mean values and its standard

deviations. A sensitivity analysis restricted to studies with more

than 500 subjects, healthy at time of blood sampling, or to studies

that reported all the required standard deviations was also con-

ducted (Table S2). Subsequently, the study-specific linear trend

and its standard error were pooled with random-effect models.

Subsidiary analyses included pairwise comparisons within each

polymorphism. The DerSimonian and Laird Q test, and the I2

test,32 were used for evaluating the degree of heterogeneity

between studies.

Results

Simulation Studies

We considered various scenarios differing in the number of

studies and, for the multilocus approach, in the priors on

the model space. Data were obtained as follows: We first

simulated a pool of 4000 haplotypes at seven biallelic

markers. Pairwise LD measures (r) between the seven

Figure 2. Graphical Representation of Equation (4)
Solid and dotted lines represent stochastic and deterministic
dependencies, respectively.
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SNPs are shown in Figure 3, with high LD only between

the last three markers. SNP 6 is assumed to be the single

causal site in the region and is retained in all subsequent

analyses. Given the high LD between SNP 5, 6, and 7, we

expect the results from the univariate analyses to be less

conclusive than those from the multiple marker approach

that adjusts for the between-marker correlations. The study

size ns was drawn from a normal distribution with mean

600 and variance 100, rounded to the nearest integer.

Then, for subject i ˛ 1,.,nsgf and study s, a continuous

phenotype ys
i is simulated as

ys
i ¼ b0 þ b6gi6 þ ms þ 3i (6)

where gi6 denotes the genotype of subject i at marker site 6

(0, 1, or 2 for homozygous wild-type, heterozygous, or ho-

mozygous mutant, respectively), (b0, b6) ¼ (1, 2), ms ~ N(0,

1), and 3 ~ N(0, 1). To reflect the fact that not all markers are

typed in every study, we select at random ms markers out of

the possible seven for each study. Thus, in most cases the

univariate analyses are based on fewer than the maximum

total of S studies. For each simulated data set, we also esti-

mated the unadjusted univariate additive effects and their

standard errors at each SNP site; the additive effects are

then combined in the univariate random-effect analy-

ses.33,34 Tables 1 and 2 present the results from the multi-

ple-marker meta-analyses. The number of studies consid-

ered was 10, 20, or 40. In each case, the tables report the

results obtained with Poisson priors on the model size in

the reversible jump algorithm with different means (1 or

2 for priors a and b, respectively) or a uniform prior on

the model space (prior c). Notice that the Poisson priors

give more weight to the null model and may in general

be a more reasonable choice in this setting. For example,

Figure 3. Pairwise LD Measures between Markers Used in the
Simulation Study
Pairwise LD Measures are r values.
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prior a is Poisson(1) and assigns a probability of ~0.26 of

having more that one associated site (~0.59 for b). The

values shown are averages over 100 replicates. For each sce-

nario, we report the marginal posterior probability of se-

lecting each SNP and the mean and 95% credible intervals

of the posterior distributions of each additive effect, condi-

tional on the SNP being selected.35,36 Note that posterior

distributions can be reliably estimated only for markers

with relatively high posterior probability of inclusion

(e.g., >0.5), and results in the table should be interpreted

Table 1. Bayesian Multilocus Meta-Analysis

Parameter b1 b2 b3 b4 b5 b6 b7 s2
y sm

2

Number of Studies Prior True 0 0 0 0 0 2 0 1 1

Post proba 0.01

(0.01)

0.01

(0.004)

0.01

(0.004)

0.005

(0.002)

0.01

(0.01)

1.00

(0.00)

0.03

(0.02)

a Meana �0.01

(0.05)

�0.004

(0.04)

0.03

(0.03)

0.01

(0.03)

�0.01

(0.07)

2.00

(0.04)

0.16

(0.14)

1.19

(0.01)

1.25

(0.61)

BCI length 0.19 0.20 0.15 0.14 0.35 0.19 0.76

Post prob 0.02

(0.01)

0.01

(0.004)

0.01

(0.01)

0.01

(0.004)

0.02

(0.01)

1.00

(0.001)

0.07

(0.08)

10 b Mean �0.03

(0.04)

�0.01

(0.03)

0.03

(0.03)

0.02

(0.03)

�0.01

(0.08)

2.00

(0.05)

0.15

(0.16)

1.08

(0.02)

1.13

(0.34)

BCI length 0.24 0.22 0.16 0.15 0.36 0.23 0.76

Post prob 0.05

(0.02)

0.04

(0.02)

0.04

(0.02)

0.03

(0.01)

0.07

(0.03)

1.00

(0.001)

0.15

(0.05)

c Mean �0.03

(0.04)

�0.01

(0.04)

0.02

(0.03)

0.01

(0.03)

�0.01

(0.07)

1.99

(0.04)

0.13

(0.12)

1.12

(0.01)

1.42

(0.46)

BCI length 0.24 0.21 0.17 0.15 0.35 0.33 0.76

Post prob 0.01

(0.01)

0.01

(0.002)

0.01

(0.003)

0.004

(0.002)

0.01

(0.003)

1.00

(0.00)

0.03

(0.08)

a Mean �0.04

(0.03)

�0.02

(0.03)

0.03

(0.02)

0.01

(0.02)

�0.01

(0.05)

1.99

(0.04)

0.09

(0.10)

1.11

(0.01)

1.10

(0.26)

BCI length 0.16 0.14 0.11 0.10 0.23 0.12 0.56

Post prob 0.02

(0.02)

0.01

(0.01)

0.01

(0.01)

0.01

(0.003)

0.02

(0.01)

1.00

(0.001)

0.05

(0.04)

20 b Mean �0.04

(0.03)

�0.02

(0.03)

0.02

(0.03)

0.01

(0.02)

�0.02

(0.05)

1.99

(0.03)

0.13

(0.112)

1.06

(0.01)

1.08

(0.17)

BCI length 0.16 0.15 0.12 0.10 0.24 0.17 0.57

Post prob 0.06

(0.05)

0.03

(0.01)

0.03

(0.01)

0.02

(0.01)

0.06

(0.05)

1.00

(0.002)

0.13

(0.08)

c Mean �0.05

(0.03)

�0.02

(0.02)

0.02

(0.02)

0.01

(0.02)

�0.01

(0.06)

1.99

(0.03)

0.10

(0.108)

1.09

(0.01)

0.99

(0.16)

BCI length 0.18 0.15 0.12 0.11 0.26 0.23 0.59

a Results are averages (std) over 100 replicateddata sets.Meanposterior estimates andcredible intervals are conditional on the SNPbeing included in a model.
Table 2. Bayesian Multilocus Meta-Analysis

Parameter b1 b2 b3 b4 b5 b6 b7 s2
y sm

2

Number of Studies Prior True 0 0 0 0 0 2 0 1 1

Post prob 0.01

(0.15)

0.01

(0.003)

0.004

(0.002)

0.003

(0.001)

0.01

(0.004)

1 (0) 0.025

(0.28)

a Mean �0.05

(0.02)

�0.03

(0.02)

0.02

(0.02)

0.01

(0.01)

�0.02

(0.04)

1.99

(0.02)

0.10

(0.08)

1.04

(0.01)

1.09

(0.14)

BCI length 0.12 0.10 0.08 0.07 0.17 0.10 0.46

Post prob 0.03

(0.03)

0.01

(0.01)

0.01

(0.00)

0.01

(0.002)

0.02

(0.01)

1 (0) 0.04

(0.03)

40 b Mean �0.05

(0.02)

�0.02

(0.02)

0.02

(0.02)

0.01

(0.02)

�0.03

(0.03)

1.99

(0.02)

0.12

(0.07)

1.03

(0.01)

0.97

(0.13)

BCI length 0.12 0.11 0.08 0.07 0.19 0.12 0.46

Post prob 0.07

(0.06)

0.03

(0.01)

0.02

(0.01)

0.01

(0.01)

0.04

(0.02)

1 (0) 0.11

(0.06)

c Mean �0.05

(0.02)

�0.03

(0.02)

0.02

(0.02)

0.01

(0.01)

�0.01

(0.04)

1.99

(0.02)

0.10

(0.10)

1.03

(0.01)

1.01

(0.11)

BCI length 0.12 0.11 0.10 0.077 0.19 0.18 0.48

Results are averages (std) over 100 replicated data sets. Mean posterior estimates and credible intervals are conditional on the SNP being included in a model.
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Table 3. Single-Locus Random-Effects Meta-Analysis

SNP ID 1 2 3 4 5 6 7

Number of Studies True 0 0 0 0 0 2 0

Mean (std) �0.033

(0.028)

�0.023

(0.024)

0.069

(0.026)

0.312

(0.026)

1.158

(0.039)

1.990

(0.040)

1.945

(0.036)

10 Mean BCI length 0.385 0.379 0.367 0.365 0.414 0.434 0.482

Mean (std) �0.03

(0.018)

�0.019

(0.018)

0.072

(0.017)

0.314

(0.017)

1.169

(0.025)

1.999

(0.026)

1.942

(0.03)

20 Mean BCI length 0.258 0.253 0.245 0.244 0.269 0.286 0.327

Mean (std) �0.032

(0.014)

�0.021

(0.012)

0.067

(0.013)

0.311

(0.015)

1.165

(0.02)

1.998

(0.017)

1.94

(0.021)

40 Mean BCI length 0.183 0.179 0.175 0.175 0.194 0.203 0.23

Results are averages over 100 replicated data sets.
with this in mind. The marginal probability of selecting the

causal site is 1 independently of the prior used and even

when considering as few as ten studies, with almost no var-

iability across replicates. Notably, all other markers have

posterior inclusion probabilities close to zero and would

therefore not be selected if we were to use the traditional

threshold of 0.5. All conditional mean additive effects are

very close to the true values with a minor bias only for the

effect at SNP 7, which is the SNP in highest LD with the

causal site. The choice of prior distribution on model space

does not have a large effect on the results, with possibly nar-

rower credible intervals and slightly larger posterior proba-

bility of including SNP 7 under prior c compared to priors

a and b. This is to be expected because the Poisson priors

favor models with few terms, whereas the uniform prior

gives equal weight to all models. The tables also report the

results for the variance terms s2
m and s2

y, which have

posterior estimates close to the true values in both cases. In-

creasing the number of studies has little or no effect on both

marginal posterior probabilities and posterior estimate bias

but does lead to narrower credible intervals as expected.
The univariate analyses on the other hand fail to unam-

biguously identify the causal site at position 6 (Table 3). On

the basis of results reported therein, although SNP 6 shows

the highest association with the phenotype, SNP 7 could

still be considered causal if no prior information is avail-

able to discriminate between the two. Even markers 4

and 5 would be selected on the basis of posterior credible

intervals; paradoxically, increasing the number of studies

only exacerbates the problem because credible intervals

become narrower.

The previous simulation study assumed the same LD

pattern across studies because study-specific genotype

data are simulated from a common haplotype pool. To

mimic a more realistic scenario, we further considered

study-specific LD patterns by simulating genotype counts

from study-specific haplotype pools characterized by

slightly different LD structures. The multilocus analysis

then uses the average LD table shown in Figure D1 (in

which we also report the standard deviations of the pair-

wise r2 values across studies in brackets). Results are re-

ported in Table 4 for replicates with 20 studies. The method
Table 4. Bayesian Multilocus Meta-Analysis when the LD Structure Is Allowed to Vary across Studies

Number

of studies

Parameter b1 b2 b3 b4 b5 b6 b7 s2
y sm

2

Prior True 0 0 0 0 0 2 0 1 1

Post prob 0.01

(0.01)

0.01

(0.01)

0.03

(0.02)

0.03

(0.06)

0.01

(0.01)

1.00

(0.00)

0.03

(0.03)

a Mean �0.02

(0.04)

�0.02

(0.03)

0.07

(0.01)

0.04

(0.04)

�0.01

(0.06)

1.97

(0.01)

0.13

(0.11)

1.06

(0.02)

1.07

(0.23)

BCI length 0.16 0.15 0.10 0.10 0.23 0.14 0.58

Post prob 0.01

(0.01)

0.01

(0.01)

0.02

(0.01)

0.01

(0.01)

0.02

(0.01)

1.00

(0.00)

0.08

(0.05)

20 b Mean �0.01

(0.04)

0.01

(0.04)

0.06

(0.02)

�0.02

(0.04)

�0.01

(0.07)

1.98

(0.04)

0.14

(0.28)

1.08

(0.02)

1.03

(0.13)

BCI length 0.2 0.12 0.15 0.15 0.32 0.29 0.67

Post prob 0.03

(0.01)

0.03

(0.01)

0.11

(0.13)

0.10

(0.08)

0.04

(0.05)

1.00

(0.00)

0.12

(0.04)

c Mean �0.02

(0.03)

�0.02

(0.02)

0.05

(0.03)

0.04

(0.04)

0.01

(0.04)

1.99

(0.03)

0.15

(0.05)

1.04

(0.01)

1.07

(0.12)

BCI length 0.17 0.15 0.12 0.10 0.22 0.24 0.58

Results are averages (std) over 100 replicated data sets. Mean posterior estimates and credible intervals are conditional on the SNP being included in

a model. See Figure D1.
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Figure 4. Summary Effect from Tradi-
tional Meta-Analysis and Bayesian Mul-
tiple-SNP Hierarchical Linear Model of
the Eight SNPs in the CRP Gene
Values shown are additive genetic effects
on (log) CRP levels with 95% confidence
intervals or credible intervals for tradi-
tional and Bayesian analyses, respectively.
For the Bayesian analysis, results are
shown only for those markers that appear
to be strongly associated after variable
selection (see Figure 5). N/A refers to
SNPs excluded from the model. The asterisk
indicates the dominant model. Negative
values indicate the variant allele is associ-
ated with a lower CRP concentration.
appears to be fairly robust to minor deviations in LD pat-

terns across studies (similar to those observed for the real

data in the next section); large differences in LD structures

across studies would necessarily invalidate the meta-

analytical approach because there would be little informa-

tion to borrow for variable selection.

Finally, we considered reducing the effect at the causal

site to 1.5 or placing it at marker position 2, which is in

linkage equilibrium with the other sites: In both cases,

the causal site is selected with high posterior probability

(>0.8, results not shown).

The WinBUGS code used to fit the model is given in

Appendix C.

A Meta-Analysis of CRP Studies

The traditional single-locus meta-analyses require that the

available data be partitioned into groups of studies in

which the same SNP was typed directly. In these analyses,

seven SNPs were associated with a codominant effect on

CRP concentration (Figure 4) with the per-allele effect

in the range of 0.19–0.58 mg/L (absolute p values:

rs1800947 ¼ 4.35 3 10�9; rs1205 ¼ 7.76 3 10�26;

rs1417938 ¼ 1.77 3 10�2; rs1130864 ¼ 2.73 3 10�11;

rs3091244 ¼ 4.50 3 10�15; rs3093077 ¼ 5.03 3 10�11;

and rs3093059 ¼ 2.27 3 10�8), corresponding to ~0.3–

0.8 SD of the population distribution of CRP 37. The

main effect estimates were robust to analyses limited to

studies of >500 subjects (Table S2), providing strong evi-

dence for an association at this locus. However, because

pooled analyses of this type are limited to individual

SNPs, it is unclear which of these SNPs have independent

effects and which are associated because of correlation

with other observed or unobserved SNPs, including the

true causal variant(s). This can be overcome by incorporat-

ing available information on pairwise LD in the region (Ta-

ble S3) within a Bayesian multilocus model as described
The
above. Bayesian model selection can then facilitate identi-

fication of variants showing the strongest independent

association with CRP concentration (Figure 5 and Table

5). The approach yields posterior model probabilities

Figure 5. Results from the Multiple-SNP Meta-Analysis using
the Bayesian Hierarchical Linear Model
The shaded bars show the posterior probability that each SNP is
included in a model, calculated from the posterior sample of models.
The x axis indicates the additive effects of each SNP on log CRP
plasma levels, conditional on that SNP being included in the model,
and the y axis indicates the corresponding posterior density. The
curves can thus be interpreted as smoothed histograms representing
the probability that the SNP effects take the values on the x axis.
Also shown are the densities, medians (:), and 95% credible inter-
vals (- - -) for the additive effects of each SNP on log CRP levels.
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Table 5. Application to the Meta-Analysis of CRP Studies

Prob

SNP included

rs3093059 rs2794521 rs3091244 rs1417938 rs1800947 rs1130864 rs1205 rs3093077

0.22 � � � �
0.12 � � �
0.10 � � � �
0.07 � � �
0.06 � � � � �

Models with more than 2% posterior probability are shown. Results assume a Poisson(2) prior on model size in the reversible jump algorithm.
conditional on the observed data from which marginal

probabilities of association for each SNP can be readily

obtained. Of the markers considered, SNPs rs1130864,

rs1205, and rs3093077, all in the 3 UTR, retain the stron-

gest independent association with CRP concentration.

An additional synonymous SNP in exon 2 (rs1800947) ap-

pears to be important, although its posterior probability of

association is sensitive to the prior on the model space, and

becomes unimportant if a more restrictive prior on the

number of associated markers in the region is used (results

not shown). These four SNPs yield the model with the

highest posterior probability (Figures 4 and 5 and Table

5). Again, the models were not materially altered when

analyses were limited to studies of >500 subjects (results

not shown).

Notably, SNPs rs1130864, rs1205, and rs3093077 formed

the trio of tag SNPs. Because each tag SNP marks a different

haplotype, the Bayesian model implies the presence of at

least three functional SNPs regulating CRP level (Figure 6).

Using HapMap, we found that there were 11 SNPs in strong

LD with rs1205, (five with pairwise r2 ¼ 1) within an asso-

ciated interval of ~100 kb. There were 11 SNPs in strong LD

with rs3093077 (nine with pairwise r2 ¼ 1), within a larger

associated interval of ~300 kb. A total of 22 SNPs lay in an

associated interval of 100 kb encompassing rs1130864

(nine with pairwise r2 ¼ 1) (Figure 7). Because tightly

linked SNPs were identified in the associated intervals,
866 The American Journal of Human Genetics 82, 859–872, April 2
a careful assessment of potential functionality for each of

these SNPs is now required.

As mentioned in the previous section, in order to accom-

modate outliers and heavy tails, we assumed the distribu-

tion of the between-studies random effects ms to be a mix-

ture of normals. In particular, inspection of the residuals

from a model fitted without the between-studies random

effect appears to suggest the use of a two-component

mixture, see Figure 8. The graph plots a sample of the

quantities

rs
j ¼ Ts

j �Wj,:
ðt Þb

ðtÞ � U
ðtÞ
j (7)

for current values of the spatial random effects U and

model at iteration t.28 The posterior distribution of a1

and a2 had means of �0.014 and 3.356, respectively (Fig-

ure 8), whereas p had posterior median estimate of

0.879. By monitoring the mixture component assign-

ments of each study, we found that outlying studies were

mostly assigned to the second component as expected

(results not shown).

Discussion

With only small genetic effects expected to contribute to

most complex diseases, the meta-analysis of studies that

consider variants in the same genetic region is a promising
Figure 6. A Reduced Median Network
Constructed with HapMap CEPH Data for
a 20 kb Region Containing the CRP Gene
Yellow circles indicate haplotypes. The size
of each circle is proportional to the fre-
quency of that haplotype in the HapMap
CEPH population. Non-HapMap SNPs (indi-
cated in italics) were placed on the net-
work with information from other CEPH
populations.
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Figure 7. Genomic Context for CRP Gene
(A) Ideogram depicting the chromosome and region in which the CRP gene lies (red line).
(B) Gene diagram with introns and exons depicted as horizontal and vertical blue lines, respectively.
(C) Pairwise r2 LD values between independently associating SNPs from Bayesian analysis (identified in top left of window, position
indicated by red arrow) and all other HapMap SNPs in the region (release 20, build 35, red ¼ r2 > 0.8, yellow ¼ 0.5 < r2 < 0.8, gray ¼
0.3 < r2 < 0.5, blue ¼ 0.2 < r2 < 0.3, and dark gray ¼ missing data).
strategy to increase our chances of finding any associa-

tions. Recognizing the importance of this approach, sev-

eral coordinated efforts have been initiated to ensure that

results from the individual studies follow agreed guidelines

and can be combined more easily.7

Most of the meta-analyses conducted so far have consid-

ered each marker in isolation, ignoring the possible corre-

lation between markers due to linkage disequilibrium that

reduces efficiency and that compromises the identification

of any causal site. In this paper, we have presented a multi-

marker approach that yields estimates of effect at each site

adjusted for the effects of other variants, as in multiple re-

gression. In both the simulation study and the application

to the CRP data, we assumed an additive genetic model.

Other choices are possible and would only involve changes

in the entries of the matrices W and X0X.

The methods borrow from the spatial data literature and

incorporate the prior knowledge of marker pairwise LD in

a fully Bayesian framework. For example, similar hierarchi-

cal models with spatial random effects are used extensively
The
in the analysis of spatial epidemiological data. A conve-

nient feature of the joint specification (Equation [3]) is

that it allows incorporation of the required correlation

structure as prior information in an explicit way.13,37 In ad-

dition, a reversible jump algorithm on the space of possible

model structures enables the selection of the most promis-

ing associations. The proposed approach assumes data on

a continuous phenotype. However, it could be extended

to the case of discrete outcomes, say case-control status,

by introducing a further set of continuous latent variables

related to the discrete outcome as in probit regression. Ex-

tensions to include metaregression are straightforward and

only involve introduction of a further hierarchy for the

vector of coefficients b in Equation (4) with means that

would then depend on study-specific covariates. Work on

these extensions is currently in progress.

When applied to the meta-analysis of studies in the CRP-

gene region, results provide evidence for three CRP modi-

fying alleles distributed over three of four common haplo-

types in Europeans. These alleles could account for the
American Journal of Human Genetics 82, 859–872, April 2008 867



strong association with CRP of each of the three SNPs that

are chosen for their ability to tag others and that mark the

different haplotypes. The associated interval for each inde-

pendently associating SNP extended at least 100 kb from

either side of the open reading frame with a very sharp

boundary of LD for at least two of these. Within each inter-

val were a number of additional candidate causal SNPs in

complete LD with the index SNP from the Bayesian analy-

sis, any of which could, in theory, regulate CRP. Although

the A and T alleles of the triallelic SNP rs3091244 appeared

to exhibit functionality in previous reporter-gene studies

in vitro,21 this SNP was not retained within the Bayesian

model. Experimental studies of this type may be biased to-

ward the study of potential regulatory SNPs in the immedi-

ate vicinity against those located remotely from the gene

of interest because of size constraints on reporter-gene con-

structs. This might explain why results of such reporter

studies are, at times, discordant with the findings of associ-

ation analyses in populations38 or alternative experimen-

tal approaches to assessing functionality.39 Irrespective of

the true causal sites, the three tag SNPs adequately capture

functional variation at this locus for large-scale gene-

disease association studies. Although the naive expecta-

tion would be of narrower limits of error around the point

estimates of SNP effects with a Bayesian approach that

includes all studies simultaneously, this was not observed.

This is because unlike the traditional meta-analyses, the

Bayesian analyses were corrected for the effect of other

SNPs; that is, uncertainty about which SNPs are directly

associated with the trait was properly incorporated in

the analyses. However, the simultaneous use of all data

strengthens evidence for an association at the gene level;

the null model does not appear at all in the posterior

Figure 8. Posterior Sample of Residuals from the Hierarchical
Model of Material and Methods Fitted without the Between-
Study Random-Effect Term ms
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sample of models, reflecting virtual certainty of an effect

on CRP at this gene.

Our approach facilitates the integration of data from

studies that have genotyped different SNPs across the

same gene or region utilizing prior information on LD. It

has a number of favorable attributes and potential applica-

tions. By increasing the available data set of information

on any SNP, the efficiency of evidence synthesis is en-

hanced and the reliability of any identified associations is

increased. Further, the variable selection procedure allows

inference on the relative magnitude of any marker-pheno-

type association and identifies those SNPs that show the

strongest association with the phenotype, either because

they are the functional site(s) or because they exhibit the

strongest allelic association with (unobserved) functional

sites. IPD (where available) can also be incorporated readily

into the analysis because the regression parameters mea-

suring the effect of variants retain the same interpretation

when considering aggregate data (i.e., phenotype means

by genotype groups as with CRP studies) or IPD (see Mate-

rial and Methods). Moreover, where a robust evidence

based on genetic association with a quantitative trait al-

ready exists (as it does for many blood measures, e.g.,

HDL cholesterol, triglycerides, and others), the methods

described could be used to add and integrate partially over-

lapping SNP data from new genome-wide analyses,

thereby harnessing existing data for both replication, and

to gain insight into likely causal sites in a gene or region.

The methods we describe, which use the freely available

software WinBUGS, are likely to be of substantial value

both to the emerging networks of investigators engaged

in synthesis of evidence on genetic associations of com-

plex quantitative traits and disorders7 and to those apply-

ing and extending findings from genome-wide association

studies.

Appendix A

Systematic Review

Two electronic databases (PubMed Medline and EMBASE)

were searched with the text words, which were also

MeSH terms, polymorphism(s), mutation(s), gene(s), ge-

netic, variant(s), and SNP(s) in combination with C-reac-

tive protein and CRP. The literature search was limited to

human and to the English language. Any additional stud-

ies in the references of all identified publications were

also searched. For inclusion, studies had to have an analyt-

ical design (case control, prospective, or cross sectional)

and examine the association between any polymorphisms

in the CRP gene and low-chronic CRP concentrations in

individuals of European descent. Studies measuring CRP

only during acute phase of an inflammatory response (e.g.,

acute ischemia or infection stimuli) were excluded. In areas

where more than one polymorphism had been studied, in-

formation about the LD between them was extracted

where available. If relevant information was not reported
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(mean CRP levels, standard deviations, genotype numbers,

or linkage disequilibrium data), or it was not reported strat-

ified by ethnicity, the authors were contacted in several oc-

casions to obtain the information. A total of four potential

studies (n ¼ 2614) in European subjects were excluded be-

cause of unavailability of data in the appropriate form (Flex

2004, n ¼ 471; Obisesan 2004, n ¼ 63; Zee 2004, n ¼ 260;

Carlson 2005, n ¼ 1820) (see Table S1).

New Data Sets

NPHS II is a prospective study of 3012 healthy white Euro-

pean middle-aged men, of which a total of 2479 with CRP

genetic data and CRP concentrations were included in this

report. Recruitment in the study commenced in 198940

in nine general practices. None of the participants had

a clinical history of unstable angina, myocardial infarction

(including silent infarction), coronary surgery, other car-

diovascular diseases, aspirin or anticoagulant use, or malig-

nant disease (except skin cancer other than melanoma) at

the time of recruitment. The Ely Study is a prospective pop-

ulation-based cohort study of the etiology and pathogene-

sis of type 2 diabetes and related metabolic disorders in

1122 individuals recruited in 1990 in Ely, Cambridge-

shire.41 Complete data on biochemical and anthropomet-

ric variables were available in 839 participants, and a total

of 548 individuals with data on the CRP genotypes and

CRP levels were included in this analysis. The EPIC-Norfolk

study is a population-based cohort study, recruiting partic-

ipants from general practices in Norfolk.42 For the present

report, only control participants from a nested case-control

study in coronary heart disease were included, providing

a total of 2196 participants with both data on CRP genetic

variants and CRP concentrations.

New Genotyping

Polymorphisms in the human CRP gene (HGNC: 2637;

1q21-q23) were identified by reference to public-domain

databases of human sequence variation. We used this in-

formation to generate a consensus map of polymorphic

sites. By using validated genotype data (minor allele fre-

quency >5%) from subjects of European descent from

the SeattleSNPs database and the human HapMap database

(see Web Resources), we examined the pattern of linkage

disequilibrium across the CRP gene. We then used the

haplotype LD r2 method to select a set of tagging (t)SNPs

capable of capturing maximum haplotype diversity among

subjects of European descent by using the program TagIT

(see Web Resources).

LD

Public domain databases (see Web Resources) and individ-

ual publications were examined for information on the

LD structure in the CRP gene. Both D0 and r2 values were

recorded, but r2 values were utilized in Bayesian modeling.

If more than one r2 value for a given pairwise was reported,

a weighted mean r2 was obtained.
Th
Appendix B

Recovering the Joint Distribution of Multiallelic Sites

from Allele Frequencies and Marginal Diallelic r2

Values

We consider two loci, the first locus having G1 ¼ three

alleles and the second locus having G2 ¼ two alleles. The

joint probability of the haplotypes at these two loci can

be represented in a 3 3 2 table of the form:

wherepij denotes the joint probability ofallele i at locus 1 and

allele j at locus 2, Pi denotes the probability of allele i at locus

1, and Q1 denotes the probability of allele 1 at locus 2.

The internal cells of this table are not observed. Our prob-

lem is to derive this table of probabilities onthe basis of infor-

mation from the margins of this table (P1, P2 and Q1) and

pair-wise correlation within two marginal tables of the form:

and

In the first of these tables, p011 denotes the joint probability

of allele 1 at locus 1 and allele 1 at locus 2, but now this

probability is conditional upon the allele at locus 1 having

either a 1 or 3 allele. Similarly, p21 denotes the probability

of allele 2 at locus 1 and allele 1 at locus 2 conditional upon

the allele at locus 1 being either a 2 or a 3.

We do not observe the two tables above but only the ap-

propriate deviations from linkage disequilibrium, d013 and

d0023, defined by

d13 ¼ P
0

1 �Q
0

1 � p
0

11

and

Table B1. Full 3 3 2 Table of Haplotype Probabilities

Allele at

Locus 1

Allele at Locus 2

1 2

1 p11 P1 � p11 P1

2 p21 P2 � p21 P2

3 Q1 � p11 � p21 (1 � Q1) � (P1 � p11) �
(P2 � p21)

(1 � P1 � P2)

Q1 (1 � Q1) 1

Table B2. First Marginal 2 3 2 Haplotype Table

Allele at Locus 2

Allele at Locus 1 1 2

1 p011 P01 � p011 P01
3 Q01 � p011 (1 � Q01) � (P01 � p011) (1 � P01)

Q01 (1 � Q01) 1

Table B3. Second Marginal 2 3 2 Haplotype Table

Allele at Locus 2

Allele at Locus 1 1 2

2 p0021 (P002 � p0021) P002
3 Q001 � p0021 (1 � Q001) � (P002 � p0021) (1 � P002)

Q001 (1 � Q001) 1
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d023 ¼ P002 � Q 001 � p0021:

We know that the probability of each pair-wise haplo-

type in Table 2 is equal to the corresponding probability

of that pairwise haplotype in Table 1, divided by the prob-

ability that the allele at the first locus is either equal to 1 or

3, (1 � P2). This means that:

p011 ¼
p11

ð1� P2Þ
and

ðQ 01 � p011Þ ¼
ðQ1 � p11 � p21Þ
ð1� P2Þ

:

Therefore,

Q 01 ¼
ðQ1 � p11 � p21Þ
ð1� P2Þ

þ p11

ð1� P2Þ

¼ ðQ1 � p21Þ
ð1� P2Þ

,

and

p11 ¼ p11ð1� P2Þ:

Following a similar argument, we also find that

Q 001 ¼
ðQ1 � p11Þ
ð1� P1Þ

and

p21 ¼ p21ð1� P1Þ:

By writing p011 and p0021 in terms of d013 and d0023, we find

that:

p11 ¼ p011ð1� P2Þ
¼ ðP01 �Q 01 � d011Þð1� P2Þ

¼
� P1

ð1� P2Þ
ðQ1 � p21Þ
ð1� P2Þ

� d011

�
ð1� P2Þ

¼ 1

ð1� P2Þ
�

P1Q1 � P1p21 � d011ð1� P2Þ2
�

and

p21 ¼ p021ð1� P1Þ
¼ ðP002 �Q 001 � d021Þð1� P1Þ

¼
� P2

ð1� P1Þ
ðQ1 � p11Þ
ð1� P1Þ

� d0021

�
ð1� P1Þ

¼ 1

ð1� P1Þ

�
P2Q1 � P2p11 � d0021ð1� P1Þ2

�
:

This means that we have two equations in two un-

knowns, p11 and p21, so that by substituting the second

equation for p21 into the first equation for p11, we can

then solve this equation in terms of p11. Substituting the

expression for p12 into that for p11 gives:

p11 ¼
1

ð1� P2Þ

�
P1Q1 � P1p21 � d011ð1� P2Þ2

�

¼ 1

ð1� P2Þ

�
P1Q1 �

P1

ð1� P1Þ

�
P2Q1 � P2p11

� d0021ð1� P1Þ2
�
� d011ð1� P2Þ2

�
,

and rearranging in terms of p11 results in the equation:
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p11 ¼ P1Q1 þ
ð1� P1Þ

ð1� P1 � P2Þ

�
P1ð1� P1Þd0021 � ð1� P2Þ2d011

�
:

We may then write p21 in the form

p21 ¼ P2Q1 þ
ð1� P2Þ

ð1� P1 � P2Þ
�

P2ð1� P2Þd011 � ð1� P1Þ2d0021

�
:

We are now able to calculate the probability of every cell

of Table B1 in terms of p11, p12, P1, P2, and Q1.

Note that d011 and d0021 can be obtained from the relevant

r2 values with the formulae:

d011 ¼ ð þ=� Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr011Þ

2P01ð1� P01ÞQ 01ð1� Q 01Þ
q

and

d0021 ¼ ð þ=� Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr 0021Þ

2P002ð1� P002ÞQ 001ð1� Q 001Þ
q

:

Care must be taken when choosing which sign to assign

these d values because they must be consistent with the

margins of the Tables B2 and B3.

Appendix C

WinBUGS Code for the Model Described in Material

and Methods

model {

# likelihood

for(j in 1:Q) {# where Q ¼
P

s ðms þ 1Þ
T[j] ~dnorm(theta[j],tauy[j])

tauy[j] ) tau.y/XsXs[j] # XsXs[j] in Equation (4)

theta[j] ) psi[j]þsumXis[j]*mu[study[j]]þU[marker[j]] #

linear predictor in Equation (4)

}

# pooled variances

for(i in 1:L) {# where L ¼
P

s ms

scale[i] ) tau.y/2

shape[i] ) pooled[i,2]/2

pooled[i,1] ~dgamma(shape[i],scale[i]) # uses the gamma

parameterization

}

#reversible jump part as detailed in Lunn et al.25

psi[1:Q] ) jump.lin.pred(W[1:Q,1:m],K,tau.beta)

id ) jump.model.id(psi[1:Q])

pred[1:(mþ1)] ) jump.lin.pred.pred(psi[1:Q],X.pred[1:

(mþ1),1:m])

for(i in 1:m){

X.pred[i,i] ) 1

for(j in 1:(i�1)) {X.pred[i,j] ) 0}

for(j in (iþ1):m) {X.pred[i,j] ) 0}

X.pred[(mþ1),i] ) 0

effect[i] ) pred[i] -pred[mþ1]

}

# mixture distribution for study effects

for(s in 1:nstudies) {

mu[s] ~dnorm(mumu[s],tau.mu)
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mumu[s] ) alpha[comp[s]]

comp[s] ~dcat(phi[ ])

}

phi[2] ) 1-phi[1]

alpha[2] ) (-phi[1]*alpha[1])/(1-phi[1])

# prior distributions

U[1:m] ~car.proper(thetaU[ ],M[ ],adj[ ],num[ ],m[ ],prec,1)

# thetaU vector of zeros of length m (number of unique

markers)

# M is weighted average of the Xs0Xs matrices

# details on vectors adj, num and m are given in the

manual for GeoBUGS

prec ~dgamma(0.5,0.0005)

tau.y ~dgamma(0.001,0.001)

tau.mu ~dgamma(0.001,0.001)

tau.beta ~dgamma(0.0001,0.0001)

phi[1] ~dbeta(1,1)

alpha[1] ~dnorm(0.0,1.0E-6)

K ~dpois(1) # scenario (a)

}

The MCMC chain was run for 1,000,000 iterations with

a burn-in of 500,000 and thinning of 100 iterations, which

took ~30 min of CPU time on an Itel Xeon 2.80 GHz with 2

GB of RAM. Convergence was checked by visual inspection

of posterior traces and by running chains with different

initial values.36

Appendix D

Figure D1. Mean Pairwise LD Measures between Markers Used
in the Simulation Study when Allowing LD Patterns to Vary
across Studies

Supplemental Data

Three tables are available at http://www.ajhg.org/.
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Web Resources

The URLs for data presented herein are as follows:

CRP:C-reactiveprotein,pentraxin-related,http://pga.gs.washington.

edu/data/crp/

HapMap homepage, http://www.hapmap.org/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim

TagIT, http://popgen.biol.ucl.ac.uk/software.html

WinBUGS software, http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/

contents.shtml
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